COURSE MEMO
FPD002 Knowledge Enabled Engineering (7,5 Hp/ECTS)

TEACHING TEAM

Examiner
Tobias C. Larsson
Professor
Mobile: +46 (0)70-5119416
tobias@ltu.se

Marco Bertoni
Assistant Professor
Office phone: +46 (0)920-492583
berber@ltu.se

Course coordinator
Marcus Sandberg
Assistant Professor
Mobile: +46 (0)70-6751826
marsan@ltu.se

Henrik Nergård
Assistant Professor
Mobile: +46 (0)70-3959968
hene@ltu.se

Andreas Larsson
Associate Professor
Mobile: +46 (0)70-3321874
daisan@ltu.se

Christian Johansson
Assistant Professor
Mobile: +46 (0)920-491055
chrjoh@ltu.se

Division of Functional Product Development
Luleå University of Technology
SE-971 87 Luleå, Sweden
www.ltu.se/tfm/fpd

COURSE OVERVIEW
Effective product development depends on well-managed knowledge throughout the whole life-cycle of the product. This course gives an introduction to methods and tools for how knowledge can be shared effectively within and between organisations and how it can be used to automate product development activities e.g. business process flows and engineering design. The course covers a range of knowledge engineering processes and practices, targeting both capture, formalization and implementation of (mainly) explicit knowledge and lightweight technologies and methods to support socio-technical knowledge sharing processes dealing with (mainly) tacit knowledge. Methods for assessing the maturity of knowledge in product development decision-making are also included. The course assignment is to conduct a company survey and either write a paper or a short report including the creation of a computer application.

Course aim
After the course the participants will grow a basic understanding of how knowledge enabled engineering methods and technologies can be used to support effective sharing of both formal/structured and informal/unstructured knowledge throughout the product development process.

Course goals
The goal with this course is that the student should be able to:
• Understand and describe the fundamentals of engineering knowledge management
• Understand and describe the advantages and disadvantages of a bottom-up approach to knowledge sharing, supported by lightweight, social computing technologies
• Understand and describe the advantages and disadvantages of a top-down approach to knowledge sharing, including the ability to create basic engineering design automation applications
• Justify the adoption of knowledge sharing methods and tools to support given collaborative design tasks, suggesting suitable approaches to deal with knowledge sharing effectively in different product development situations.

PRACTICAL DETAILS

Examination
The course includes one individual preparatory assignment, one team/individual assignment as well as active participation during the two course meetings. Read the separate sections on assignments below. Grading is Pass (G) or Fail (U).

Attendance
Your attendance is expected at both course meetings. We believe that your ability to do well in the course depends largely on your participation in lectures and exercises.

Deadlines
When a deadline is missed extra homework may be needed. If you believe that you have particularly strong reasons for not meeting a deadline, talk to the course coordinator before the deadline to negotiate a new deadline and possible homework assignments.

Language
The course language is English. If all participants speak and understand Swedish, the lecturers might choose to hold their lectures in Swedish. All lecture material will be in English.

Plagiarism
All assignments will be checked with the Ephorus plagiarism controller software. All cases of academic misconduct will be reported.

Recommended literature
Material provided in Luleå consisting of training material and scientific papers of interest for the course. Material is free of charge.

Referencing
To avoid plagiarism, make sure that you reference the source of the ideas and information that you have used to complete the assignments.

Location
The meetings take place at Luleå University of Technology at Campus Porsön in Luleå. If you need suggestions of suitable hotels please contact the course coordinator.

Questions
You are very welcome to contact any member of the teaching team if you have any questions throughout the duration of this course. Since the door to our office space is locked, please schedule a time with us via e-mail. In case of more urgent matters, please call the course coordinator.
PREPARATORY ASSIGNMENT

Each participant shall read one PhD thesis within the course subject and write a one page analysis stating sweet spots and weak spots. Send the analysis to the course coordinator on April 19 at the latest. Select a thesis from the following:

- Boart, P., (2007), The enabling of product information in the conceptual phase, PhD thesis, Luleå University of Technology
- Johansson, C., (2009), Knowledge maturity as decision support in stage-gate product development, PhD thesis, Luleå University of Technology.
- Nergård, H., (2009), Knowledge engineering models as experience carriers, PhD thesis, Luleå University of Technology.
- Pulli M., (2004), Engineering knowledge management system evolution, PhD thesis, University of Parma (Contact the University of Parma to get a copy)

All theses (except Pulli’s) can be downloaded from: http://staff.www.ltu.se/~marsan/
Right click FPD002_thesis.zip and save to your hard drive. Extract using e.g. WinRAR or 7zip

It is also possible to contact the coordinator and make an own suggestion.

MAIN ASSIGNMENT

All participants will make a survey, or similar, at their partner companies (one or more) to find out how knowledge currently is managed in terms of processes, tools and methods used. Example questions:

- Which process does the company follow for engineering knowledge management?
- How does the company perform engineering design automation?
- How does the company assess knowledge maturity at stage gates?
- Which supporting technologies are currently available to assist engineers in managing explicit and tacit knowledge?
- How does the company ensure that lessons learned are captured and reused?
- How does the company ensure that design rationale can be traced?
Based on these findings the participants discuss how the company could change for the better. If there are other ideas coupled to knowledge enabled engineering, especially the ones that would greater benefit the participant’s research project, please discuss them with the teaching team. The assignment can be made individually or in teams of maximum three people. The assignments will be orally presented at the second meeting. The papers and reports will be reviewed both by the teaching team and by the other course participants. There are two assignment options:

Option 1: Write paper (8-12 pages)
Option 1 implies conducting the survey, analysing the results, proposing a change and discussing pros and cons of the proposal. Arguments should be supported through extensive referencing of relevant literature. The paper should be structured according to the guidelines provided by an international, peer-reviewed journal or conference of your own choice.

Option 2: Write report (4-5 pages) and create computer application
Option 2 implies conducting the survey, analysing the results, proposing a change and creating a computer application that will enable a change for the company. The short report contains a description of the survey, results analysis and change proposal including computer application.

MAIN ASSIGNMENT DATES
As the deadline schedule is tight it is recommended to start the assignment before the first meeting.

- Draft paper/report submission: May 17, 2010
- Review due: May 24, 2010
- Final paper/report submission: June 7, 2010
- Presentation of paper, reports and applications: June 9, 2010

MEETINGS

FIRST
The first meeting contains both theoretical introductions and practical exercises regarding engineering knowledge management, Engineering 2.0 and design automation. The course assignment is also introduced and an industrial guest speaker will participate.

Starts: April 27, 2010, at 08.30 in E206 at Luleå University of Technology, Campus Porsön, Luleå
Ends: April 29, 2010, at 15.00

SECOND
The second meeting features the concept of knowledge maturity and other theoretical perspectives on knowledge enabled engineering, followed by a practical exercise that will connect to all theories and approaches introduced during the course. The main course assignment will also be presented orally.

Starts: June 8, 2010, at 10.00 in E206 at Luleå University of Technology, Campus Porsön, Luleå
Ends: June 9, 2010, at 15.00